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We consider gyroscopic stabilization systems (GSS) on a fixed base with due 

regard to the fundamental properties of their elements [l] (elasticity, viscous 

friction in the material of the elastic bodies, transient responses in the electri- 

cal circuits of the system). We investigate the stability of the steady-state 

motion under parametric perturbations p2, 31. 

1. Let ‘f’. . . . q’ be the angles of natural rotation of the gyroscopes, let the gyro- 

motors be asynchronous (induction) motors, and, in steady-state motions, let c&‘~ -= co1 = 

const (i = 1. . . . 7-j. The equations for GSS with synchronous gyromotors differ only by 

expressions for the moments around the rotors’ axes [4, 51. We denote by ‘I’, ., (I“ 
the mechanical, and by $‘+I, . . . . c/3? .I‘ the electrical generalized coordinates, where 

Q’, . ., $ are the precession angles of the gyroscopes, $+I. ., cirn (m 1 1.) are 

the deviations of the ‘~1 from their values in steady-state motion, 4r’l+l, . . . (,s cs = 
VI ;- 1) are the angles of rotation of the rotors of the stabilizing motors, $*I.‘. . ., q” 
are the deformations of the elastic elements, measured from their equilibrium position. 

The kinetic energy is r = T,, + T,, where T, is the kinetic energy of the mech- 

anical part of the system with gyroscopes [6], YE is the electromagnetic energy of the 

system [ 11 with the square matrices n == )I uki (qnf) 11 and I, = 11 L,,f (Bip) 11 of dimensions 

n ?: n and u >: U, respectively. We assume that the potential energy II (q4), of the 

elastic forces, the dissipative function 1s ,vl (qM, q,,,‘) of the solid and viscous frictional 

forces, and the dissipative function R, (qE*) of the currents, are holomorphic functions 

whose expansions start with terms of not less than second degree, with matrices c -y 

/I cki II1 b = II bkj (CrdL H = iJ R,,j 11 , respectively. 

We write the differential equations in A. V. Gaponov’s form [1, 71. Let in [1] the 

coefficients in the equations depend upon certain constant parameters a’ = a’ ~I- E%. 

the components of a W. -dimensional vector a = a -1 E, where ai is the rated value of 

the parameter, ei is its perturbation. Further, suppose that some perturbing forces of 

the form X 

2 F/;j (q,\r, q.\,‘, qE.9 a)~’ (k=l,...,n.fu) 

j=t 

are acting on the system, where 7j are perturbations of parameters, the components of 
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a x-dimensional vector 7, whose rated values equal zero. We assume the holomorphi- 
city of all the functions with respect to the collection of variables in a region A 

11 11 n-l-u 
2 (*i)s < A, 2 (?)a < AZ, 2 (q”)s d 243 

i=l i=1 i=n+1 

i (+ + i (ri)2 < ‘44; Ai>0 

i=l i=l 

WetakeitthatF,i=Ofor k==l,..., m,j==v+l,..., x,O<<y<X.since, 
from the point of view of influence on stability, we can distinguish two groups of par&. 

meters : 
1) unessential parameters, small perturbations of which do not violate the system’s 

stability (as shown below, there are all the ai, I”+‘, . . . , T” to which correspond, for 

example, the moments of inertia, the debalance of the platform, etc.) ; 
2) essential parameters, small perturbations of which may lead to system instabil- 

ity (these are ~1, . . . , T” to which correspond, for example, the debalance of the gyro- 

scope’s rotor, etc.). The perturbations of parameters of type 2 give rise to additional 
perturbing forces, at least, in the first m equations. 

Suppose that the system of equations of a GSS (system (1) from [l] with the additions 

indicated) admits of a particular solution, defining the steadyastate motion, which we 
take as the unperturbed one 

q .\I * = O, q,’ = q’E*’ q, = (I.& + qE’0’ q, = 91,. q, = &,,, q, = q,,,. 
q4 =O, a a, y = 0 

Here qi, is an arbitrary real vector from A ; the starred quantities satisfy the system 

r&+1‘ 
x .4$;)~iC;j = 0 (k z ~rz + 1, . ., s), 

ij=jl-l-l 

- $ + I?” Cl (k 7 II A- 1, ., ,i T u) 

Here, as in [l], 

Eh’ z - i wiij&j . . . (k II + 1, . . ., II + 1), 

I==1 
n+u 

where o, R are constant matrices. We consider a GSS with commutator machines 

with fixed brushes (Pjk’ E (1). 

2, Let us solve the problem of the stability of the unperturbed motion relative to 
4 * MI qM ’ q,’ under parametric perturbations. The problem posed is equivalent to the 

problem of Liapunov stability with respect to q,,. qALI*, q,', e, y. The equations of un- 
perturbed motion have the form 
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Here L’, U., A are matrices of dimensions I) ji, I! X 1. 1 X i,, respectively, I;,,. Ffi; 

are submatrices of the ( (n U) K. )-matrix F :- 11 f*,,j Ij , of dimensions u ,: X, 14 ,, x , 
respectively, I{,, ff2, H3 are submatrices of matrix f(, of dimensions 1 I(. (p - I) A 
11, ((c - p) x U. respectively, Qw” and QE” are vector-valued functions, holomorphic 

in the collection of arguments, whose expansions start with terms of second degree(there 

may be first degree terms only in c) and 

where i;, is a matrix of dimension IU x x, ((I” and ri are in-and v-dimensional vectors., 

respectively. Here we have retained the previous notation for the perturbed variables; the 

values of the corresponding functions in unperturbed motion are denoted by an index 

zero. 

In (2.1) we make a change of variables q, = v,,[ -I- pnr, q,’ =z vE + pE, and then 

qi = vi -i- pi (i = 1,2,3,4), respectively. Here \,.,I and vp are vector-valued functions, 

holomorphic in E. y (v2 and v3 are null vectors), defined uniquely by the system 

i) 
I”q,’ 

/I I/ /; -- c”q4 ~ 
f Qz” (0) 1 Fi-y, 0 - Qr<’ -) QE” (0) --I F,‘y (2.2) 

if its determinant 
.,l? 

A - 1 0’ 1 / (.3 / Ha” -L 0” z+ 0 

I I 43O 

In system (X.2). Q?” (O), QF:” (0) are the values of the corresponding functions when 

q31 ‘Ir;: L- (1Jf -: 0. In the new variables Eqs. (2.1) are 
II I, 

F,“ 
x flq \[’ -- (b” -- :‘a) q ,[’ = 1’ \[’ L',, + 

I I 0 !y 

p.q 

1’ ,,’ ; 0 \,’ !I’,,’ I’,:), [‘E’ I- ‘2s (Pp I’,:) 

where P ,,” and I’, are vector-valued functions, holomorphic in the collection of 

variables P,,~. pe, q,‘, E, y , whose expansions do not contain terms of less than second 

degree. Let y, = 0. Then, the following theorem is valid. 

Theorem . If except for I,) zero roots all the remaining roots of the characteristic 

equation of system (2.1) without parametric perturbations have negative real parts, then 

the unperturbed motion (the trivial solution of system (2.1)) is stable under parametric 

perturbations of type 1 relative to q,‘, q,', qM. As t -+ Q every perturbed motion 
tends to one of the motions: qy’= 0, g, = k’, + tel. qr = (:c. ‘1:~ z (::%. q-1 z (‘4 * “3 

q,,:’ = I.,, + vE, where Ui, IL,, 11, 1 are holomorphic vector-valued functions defined 
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by the system 

0 :7 + PT” (q,,’ := O), 0 -7 P,” i- p,“(q,l’- 0) (2.4) 

System (2.1) admits of a time-independent holomorphic Liapunov function 
. . 

n,(117.1*+ (bl" + !?I'.) q&f + cf (q,lI I qE 3 qUf 8,~) = N, 

where ('13 1, 13 n"l are submatrices of the ( m X n )-matrices of the same designation ; 

v, is an rn-dimensional holomorphic function whose expansion starts with terms of not 

less than second order, vanishing at 

q, * = 0, q,’ = u, + \ li, q, mm- I_, + Vl, qe = u* + v4 
. 

and at any q,, q3, E, y from A; Ci, N are arbitrary constant vectors determined by the 

initial perturbations of the variables being considered. 

Proof. We examine the stability of the trivial solution of (2.3) relative to all the 

variables pM, pE, qnl’, E, y. We introduce the new variables 

z = alqfil * “~ (IhO --- g1 ‘) I).,,, Xl 'T.\f" s.' L?,,, x3 ~~- p1, x1 = p4 

Transformation (2.5) is nonsingular because its determinant AI is not zero. Indeed, to 

within sign 

where by the theorem’s hypothesis the characteristic equation D (h) = h’“D, 0.) = 0 of 

the original system has only m zero roots, and to within sign 

In the new variable Eqs. (2.3) become 

rlz dxl d.K? 
-_=z ” - 

rlt ’ dt=- e’xl + X,,' -- X,, , clt 
z - E’x1 + X,,’ +- XE” 

x.,,‘= i.;iic+J. xEf~-~;~:;~~:~::+ x_,,“_z I~;~::!~ 

(1 7 n-1, e (6 -:- g)4, k -= Lila 

Here (2,. d,. d,. d4 are submatrices of d , of dimensions 1 X IL. r X ~IY cs - m, A “* 

(n - s) X tz , respectively ; Z, X,,“, X,” are holomorphic vector-valued functions whose 

expansions start with terms of not less than second degree, which follows from the man- 

ner in which they were formed, and Z (x L ~-z 0) = 0. Transformation is uniformly regular 

[S], i.e. the problem of stability relative to the old variables is equivalent to the prob- 

lem of stability relative to the new variables z, x. By the theorem’s hypotheses the 

characteristic equation of system (2.6) has, besides zero roots, roots only with negative 

real parts, since the first-approximation system for (2.6) can be obtained if in the first- 

approximation equations for (2.3) we replace the variables by means of a nonsingular 
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linear transformation obtained from (2.5) by substituting (1’ for n (‘:+I 7- P,,~, EJ . And 

for linear systems with constant coefficients the characteristic equation is invariant un- 

der non-singular linear transformations. 

The algebraic system, obtained from (2.6) if we set dXi/dt = 0 (i == 1, 2. :i. ‘t), deter- 

mines, under the theorem’s hypotheses, xi = Wi (z, e, y2) as holomorphic functions of 

their own variables for sufficiently small values of their moduli, and \V, ~:~ (1. while the 

remaining satisfy the system 

@ -1. 1L ‘x3 ! II - Px, 
f X2” (Xl 0). () _ X,’ i_ X,” (XI = 0) 

In the old variables system (2.4) corresponds to this system. 

By the way in which it was formed we get that the vector-valued function Z (z, e, yz, 

x = W) = 0. Thus, by using the appropriate theorems in 19, lo], we can conclude that 

the trivial solution of (2.6) is stable relative to all the variables z, x. z?, y2 and, as t -- 

CIO , any perturbed motion tends to one of the motions 

z = C’. XI = 0, xi ~- - Wi (C’, f. yj) (i = “, :i, $). F m= Dl, y? 7 yzo 

System (2.6) admits of a holomorphic integral 

% $ CD (z. x - w, E, y,) : S’ 

where @ is a holomorphic rn-dimensional vector-valued function not containing terms 

lower than second degree andvanishing at x = LV.Consequently, the trivial solution of 

(2.6) is stable relative to z, x under parametric perturbations. We obtain the theorem’s 

assertions by reverting to the original variables. 

Note. We can show that the theorem is valid both for commutatorless machines as 

well as under the assumption that the gyromotors are alternators whose moments are 

r4, 51 (i 1..... 1.’ -r) 

where Ei are holomorphic functions vanishing for (I”-~ = 0, q I-i =- 0. 

Let us consider the influence of parametric perturbations of type 2 upon stability, i.e. 

let yI = (;I . . .‘r’) # 0. By transformation (2.5) we obtain a system in the new varia- 

bles which differs from(2.6) only in the appearance of additional perturbing forces in 

the equations. Let ~1” # 0, for example, F,~’ + O. We set the last v - 1 components 

of y1 equal to zero and we solve the problem of the stability of the trivial solution rela- 

tive to z, s, E, Y. We take the scalar Liapunov function 1. : (2’ -/- (D1)ylF~l”. where 
-1 ,I)’ =~ ;V’ 

bed &tern 

is an integral of system (2.6). The derivative I” relative to the pertur- 
,” (“;‘F,,O)” 1 (T’)J J (Z, x, E, y) 

is a holomorphic function whose expansion starts with terms not less than first order. 

Thus I” >, 0, and there exists a sufficiently small neighborhood wherein V’ = U only 

for y’ -~= 0, i.e. for I’ 0. Consequently, by Chetaev’s theorem the trivial solution 

Z AL 0, x = 0, 8 = 0. y ~ 0 is Liapunov unstable, i.e. the unperturbed motion is un- 

stable under parametric perturbations of type 2. 

Let us now consider r7 (j -z 9, . . . ,v), i.e. perturbing forces of the form l,‘j;zjL $ . . . f 
b’,<“;” , which we treat as constantly acting perturbations. The trivial solution is Liapunov 
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unstable, therefore, by Gorshin’s theorem [ll], it is strongly unstable under constantly 
acting perturbations. 

In conclusion the author thanks V. M. Matrosov for guidance. 
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